Diurnal Cycle Relationships between Passive Fluorescence, PRI and NPQ of Vegetation in a Controlled Stress Experiment

Author:

Alonso Luis,Amorós-López Julia,Vila-Francés Joan,Gómez-Chova LuisORCID,Moreno Jose,

Abstract

In order to estimate vegetation photosynthesis from remote sensing observations; some critical parameters need to be quantified. From all absorbed light; the plant needs to release any excess that is not used for photosynthesis; by non-photochemical quenching; by fluorescence emission and unregulated thermal dissipation. Non-photochemical quenching (NPQ) processes are controlled photoprotective mechanisms which; once activated; strongly control the dynamics of photochemical efficiency. With illumination conditions increasing and decreasing during a diurnal cycle; photoprotection mechanisms needs to change accordingly. The goal of this work is to quantify dynamic NPQ; measured from active fluorescence measurements; based on passive proximal sensing leaf measurements. During a 22-day controlled light and water stress experiment on a tobacco (Nicotiana tabacum L.) leaf we measured the diurnal dynamics of passive fluorescence (Chl F); the Photochemical Reflectance Index (PRI); the Absorbed Photosynthetically Active Radiation (APAR) and leaf temperature in combination with the actively retrieved non-photochemical quenching (NPQ) parameter. Based on a bi-linear combination of diurnal APAR and PRI (plane fit model) we succeeded to estimate NPQ with a RMSE of 0.08. The simple plane fit model estimation represents well the diurnal NPQ dynamics; except for the high light stress phase; when additional reversible photoinhibition processes took place. The present works presents a way of determining NPQ from passive remote sensing measurements; as a necessary step towards estimating photosynthetic rate.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3