PGPR Promotes the Recovery of Submerged Macrophytes via Indigenous Microbiome Modulations under Combined Abiotic Stress

Author:

Li Yahua1,Liu Xiangfen2,Li Qianzheng2,Guo Yao2,Zhang Yi2ORCID,Wang Chuan234ORCID,Zhou Qiaohong2,Wu Zhenbin12

Affiliation:

1. School of Environmental Studies, China University of Geosciences, Wuhan 430074, China

2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

3. Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China

4. Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China

Abstract

The restoration of submerged macrophytes is commonly limited by abiotic stress. Here, we isolated PGPR strains from the rhizosphere of submerged macrophytes using ACC deaminase selective medium, and evaluated their growth promoting effects on Vallisneria natans (V. natans) under low light intensity and (or) high sediment organic matter load, and also explored the indigenous microbiome response of V. natans seedlings to PGPR inoculants. Ten isolates were chosen from the 252 isolated strains based on the ACC deaminase activity and the production of IAA and siderophore. M1 (Pseudomonas vancouverensis) and E15 (Enterobacter ludwigii) had the best growth promoting effects under low light stress and under double stress of low light and high sediment organic matter load, and the shoot height increased by 36% and 46%, respectively. The results of indigenous microbiome analysis showed that PGPR inoculants could regulate the relative abundance of unclassified_f_Enterobacteriaceae and improve the α-diversity of the rhizosphere bacterial community. Under high sediment organic matter load, inoculation of PGPR obviously shifted the β-diversity of rhizosphere bacterial communities to promote the early growth of V. natans. This study expands the application of plant–microbe interaction in the field of freshwater ecological restoration.

Funder

National Natural Science Foundation of China

Open Project Fund of Hubei Key Laboratory of Regional Development and Environmental Response

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3