Feeling Uncertain—Effects of a Vibrotactile Belt that Communicates Vehicle Sensor Uncertainty

Author:

Krüger Matti,Driessen TomORCID,Wiebel-Herboth Christiane B.,de Winter Joost C. F.ORCID,Wersing Heiko

Abstract

With the rise of partially automated cars, drivers are more and more required to judge the degree of responsibility that can be delegated to vehicle assistant systems. This can be supported by utilizing interfaces that intuitively convey real-time reliabilities of system functions such as environment sensing. We designed a vibrotactile interface that communicates spatiotemporal information about surrounding vehicles and encodes a representation of spatial uncertainty in a novel way. We evaluated this interface in a driving simulator experiment with high and low levels of human and machine confidence respectively caused by simulated degraded vehicle sensor precision and limited human visibility range. Thereby we were interested in whether drivers (i) could perceive and understand the vibrotactile encoding of spatial uncertainty, (ii) would subjectively benefit from the encoded information, (iii) would be disturbed in cases of information redundancy, and (iv) would gain objective safety benefits from the encoded information. To measure subjective understanding and benefit, a custom questionnaire, Van der Laan acceptance ratings and NASA TLX scores were used. To measure the objective benefit, we computed the minimum time-to-contact as a measure of safety and gaze distributions as an indicator for attention guidance. Results indicate that participants were able to understand the encoded uncertainty and spatiotemporal information and purposefully utilized it when needed. The tactile interface provided meaningful support despite sensory restrictions. By encoding spatial uncertainties, it successfully extended the operating range of the assistance system.

Publisher

MDPI AG

Subject

Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Eyes: Design and Evaluation of the Prediction-Level Cooperative Driving with a Real-World Automated Driving System;Proceedings of the 14th International Conference on Automotive User Interfaces and Interactive Vehicular Applications;2022-09-17

2. The Effects of Tactile Display on Automated Vehicle Takeover: A Literature Review;Proceedings of the Human Factors and Ergonomics Society Annual Meeting;2022-09

3. In-Vehicle Human Machine Interface: Investigating the Effects of Tactile Displays on Information Presentation in Automated Vehicles;IEEE Access;2022

4. Tactile encoding of directions and temporal distances to safety hazards supports drivers in overtaking and intersection scenarios;Transportation Research Part F: Traffic Psychology and Behaviour;2021-08

5. Investigating the Effect of Sensory Concurrency on Learning Haptic Spatiotemporal Signals;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2021-03-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3