Topic Jerk Detector: Detection of Tweet Bursts Related to the Fukushima Daiichi Nuclear Disaster

Author:

Nagaya Hiroshi,Hayashi Teruaki,A. Torii Hiroyuki,Ohsawa Yukio

Abstract

In recent disaster situations, social media platforms, such as Twitter, played a major role in information sharing and widespread communication. These situations require efficient information sharing; therefore, it is important to understand the trends in popular topics and the underlying dynamics of information flow on social media better. Developing new methods to help us in these situations, and testing their effectiveness so that they can be used in future disasters is an important research problem. In this study, we proposed a new model, “topic jerk detector.” This model is ideal for identifying topic bursts. The main advantage of this method is that it is better fitted to sudden bursts, and accurately detects the timing of the bursts of topics compared to the existing method, topic dynamics. Our model helps capture important topics that have rapidly risen to the top of the agenda in respect of time in the study of specific social issues. It is also useful to track the transition of topics more effectively and to monitor tweets related to specific events, such as disasters. We attempted three experiments that verified its effectiveness. First, we presented a case study applied to the tweet dataset related to the Fukushima disaster to show the outcomes of the proposed method. Next, we performed a comparison experiment with the existing method. We showed that the proposed method is better fitted to sudden burst accurately detects the timing of the bursts of the topic. Finally, we received expert feedback on the validity of the results and the practicality of the methodology.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3