A Multiscale Recognition Method for the Optimization of Traffic Signs Using GMM and Category Quality Focal Loss

Author:

Gao Mingyu,Chen ChaoORCID,Shi Jie,Lai Chun SingORCID,Yang YuxiangORCID,Dong Zhekang

Abstract

Effective traffic sign recognition algorithms can assist drivers or automatic driving systems in detecting and recognizing traffic signs in real-time. This paper proposes a multiscale recognition method for traffic signs based on the Gaussian Mixture Model (GMM) and Category Quality Focal Loss (CQFL) to enhance recognition speed and recognition accuracy. Specifically, GMM is utilized to cluster the prior anchors, which are in favor of reducing the clustering error. Meanwhile, considering the most common issue in supervised learning (i.e., the imbalance of data set categories), the category proportion factor is introduced into Quality Focal Loss, which is referred to as CQFL. Furthermore, a five-scale recognition network with a prior anchor allocation strategy is designed for small target objects i.e., traffic sign recognition. Combining five existing tricks, the best speed and accuracy tradeoff on our data set (40.1% mAP and 15 FPS on a single 1080Ti GPU), can be achieved. The experimental results demonstrate that the proposed method is superior to the existing mainstream algorithms, in terms of recognition accuracy and recognition speed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3