Using ANN and SVM for the Detection of Acoustic Emission Signals Accompanying Epoxy Resin Electrical Treeing

Author:

Dobrzycki ArkadiuszORCID,Mikulski Stanisław,Opydo Władysław

Abstract

Electrical treeing is one of the effects of partial discharges in the solid insulation of high-voltage electrical insulating systems. The process involves the formation of conductive channels inside the dielectric. Acoustic emission (AE) is a method of partial discharge detection and measurement, which belongs to the group of non-destructive methods. If electrical treeing is detected, the measurement, recording, and analysis of signals, which accompany the phenomenon, become difficult due to the low signal-to-noise ratio and possible multiple signal reflections from the boundaries of the object. That is why only selected signal parameters are used for the detection and analysis of the phenomenon. A detailed analysis of various acoustic emission signals is a complex and time-consuming process. It has inspired the search for new methods of identifying the symptoms related to partial discharge in the recorded signal. Bearing in mind that a similar signal is searched, denoting a signal with similar characteristics, the use of artificial neural networks seems pertinent. The paper presents an effort to automate the process of insulation material condition identification based on neural classifiers. An attempt was made to develop a neural classifier that enables the detection of the symptoms in the recorded acoustic emission signals, which are evidence of treeing. The performed studies assessed the efficiency with which different artificial neural networks (ANN) are able to detect treeing-related signals and the appropriate selection of such input parameters as statistical indicators or analysis windows. The feedforward network revealed the highest classification efficiency among all analyzed networks. Moreover, the use of primary component analysis helps to reduce the teaching data to one variable at a classification efficiency of up to 1%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. High-voltage tests and energy losses in insulating materials

2. Dielectric Phenomena in High Voltage Cables;Robinson,1936

3. Breakdown of Solid Dielectrics;Whitehead,1932

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3