Unsupervised Learning of Total Variability Embedding for Speaker Verification with Random Digit Strings

Author:

Kang Woo HyunORCID,Kim Nam Soo

Abstract

Recently, the increasing demand for voice-based authentication systems has encouraged researchers to investigate methods for verifying users with short randomized pass-phrases with constrained vocabulary. The conventional i-vector framework, which has been proven to be a state-of-the-art utterance-level feature extraction technique for speaker verification, is not considered to be an optimal method for this task since it is known to suffer from severe performance degradation when dealing with short-duration speech utterances. More recent approaches that implement deep-learning techniques for embedding the speaker variability in a non-linear fashion have shown impressive performance in various speaker verification tasks. However, since most of these techniques are trained in a supervised manner, which requires speaker labels for the training data, it is difficult to use them when a scarce amount of labeled data is available for training. In this paper, we propose a novel technique for extracting an i-vector-like feature based on the variational autoencoder (VAE), which is trained in an unsupervised manner to obtain a latent variable representing the variability within a Gaussian mixture model (GMM) distribution. The proposed framework is compared with the conventional i-vector method using the TIDIGITS dataset. Experimental results showed that the proposed method could cope with the performance deterioration caused by the short duration. Furthermore, the performance of the proposed approach improved significantly when applied in conjunction with the conventional i-vector framework.

Funder

Samsung Research Funding Center of Samsung Electronics

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3