Abstract
In this paper, we consider personalized treatment decision strategies in the management of chronic diseases, such as chronic kidney disease, which typically consists of sequential and adaptive treatment decision making. We investigate a two-stage treatment setting with a survival outcome that could be right censored. This can be formulated through a dynamic treatment regime (DTR) framework, where the goal is to tailor treatment to each individual based on their own medical history in order to maximize a desirable health outcome. We develop a new method, Survival Augmented Patient Preference incorporated reinforcement Q-Learning (SAPP-Q-Learning) to decide between quality of life and survival restricted at maximal follow-up. Our method incorporates the latent patient preference into a weighted utility function that balances between quality of life and survival time, in a Q-learning model framework. We further propose a corresponding m-out-of-n Bootstrap procedure to accurately make statistical inferences and construct confidence intervals on the effects of tailoring variables, whose values can guide personalized treatment strategies.
Reference37 articles.
1. Marginal structural models versus structural nested models as tools for causal inference;Robins,2000
2. Optimal structural nested models for optimal sequential decisions;Robins,2004
3. Optimal dynamic treatment regimes
4. An experimental design for the development of adaptive treatment strategies
5. Q-learning for estimating optimal dynamic treatment rules from observational data
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献