Application of Artificial Neural Networks for Accurate Determination of the Complex Permittivity of Biological Tissue

Author:

Bonello JulianORCID,Demarco AndreaORCID,Farhat ImanORCID,Farrugia Lourdes,Sammut Charles V.ORCID

Abstract

Medical devices making use of radio frequency (RF) and microwave (MW) fields have been studied as alternatives to existing diagnostic and therapeutic modalities since they offer several advantages. However, the lack of accurate knowledge of the complex permittivity of different biological tissues continues to hinder progress in of these technologies. The most convenient and popular measurement method used to determine the complex permittivity of biological tissues is the open-ended coaxial line, in combination with a vector network analyser (VNA) to measure the reflection coefficient (S11) which is then converted to the corresponding tissue permittivity using either full-wave analysis or through the use of equivalent circuit models. This paper proposes an innovative method of using artificial neural networks (ANN) to convert measured S11 to tissue permittivity, circumventing the requirement of extending the VNA measurement plane to the coaxial line open end. The conventional three-step calibration technique used with coaxial open-ended probes lacks repeatability, unless applied with extreme care by experienced persons, and is not adaptable to alternative sensor antenna configurations necessitated by many potential diagnostic and monitoring applications. The method being proposed does not require calibration at the tip of the probe, thus simplifying the measurement procedure while allowing arbitrary sensor design, and was experimentally validated using S11 measurements and the corresponding complex permittivity of 60 standard liquid and 42 porcine tissue samples. Following ANN training, validation and testing, we obtained a prediction accuracy of 5% for the complex permittivity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3