An Acid-Sensitive Bone Targeting Delivery System Carrying Acacetin Prevents Osteoporosis in Ovariectomized Mice

Author:

Sun Xiaochen,Song Chenyu,Zhang Chenxi,Xing Chunlei,Lv Juan,Bian Huihui,Lv Nanning,Chen Dagui,Dong Xin,Liu Mingming,Su LiORCID

Abstract

One effective treatment for postmenopausal osteoporosis is to inhibit osteoclasts and subsequent bone resorption. In our study, we demonstrated that acacetin, a flavone with potential therapeutic effects in infections, cancers, and several metabolic disorders, inhibited osteoclast differentiation and bone resorption in vitro. For improving the efficacy of acacetin in vivo, we developed an acid-sensitive bone-targeting delivery system composed of an acid-sensitive linker (N-ε-maleimidocaproic acid hydrazide, EMCH) for ensuring an effective release of acacetin at the site of action and a hydrophilic aspartic acid hexapeptide ((Asp)6, D6) as the effective bone targeting agent. Our results revealed that Acacetin-EMCH-D6 specifically bound to the bone surface once administrated in vivo, prolonged the retention time in bone and released acacetin at the osteoclastic bone resorption sites where the acidity is higher. We further demonstrated that, in ovariectomy-induced osteoporosis mice, treatment with Acacetin-EMCH-D6 inhibited osteoclast formation and increased trabecular bone mass. On the contrary, neither acacetin nor EMCH-D6 with the same dosage alone showed significant anti-osteoporosis effects in vivo. Mechanistically, targeted delivery of acacetin to the bone resorption sites by Acacetin-EMCH-D6 inhibited autophagy through activating PI3K/AKT/mTOR pathway in osteoclasts, while the activation of autophagy by rapamycin partially reversed the inhibitory effects of acacetin in vitro and in vivo. In summary, our study, for the first time, showed that the acid-sensitive bone-targeting delivery system carrying acacetin was effective for the treatment of postmenopausal osteoporosis. Thus, targeted delivery of acacetin using Acacetin-EMCH-D6 to bone resorption sites is a promising therapy for osteoporosis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3