Uncertainties and Perspectives on Forest Height Estimates by Sentinel-1 Interferometry

Author:

De Petris SamueleORCID,Sarvia FilippoORCID,Borgogno-Mondino EnricoORCID

Abstract

Forest height is a key parameter in forestry. SAR interferometry (InSAR) techniques have been extensively adopted to retrieve digital elevation models (DEM) to give a representation of the continuous variation of the Earth’s topography, including forests. Unfortunately, InSAR has been proven to fail over vegetation due to low coherence values; therefore, all phase unwrapping algorithms tend to avoid these areas, making InSAR-derived DEM over vegetation unreliable. In this work, a sensitivity analysis was performed with the aim of properly initializing the relevant operational parameters (baseline and multilooking factor) to maximize the theoretical accuracy of the height difference between the forest and reference point. Some scenarios were proposed to test the resulting “optimal values”, as estimated at the previous step. A simple model was additionally proposed and calibrated, aimed at predicting the optimal baseline value (and therefore image pair selection) for height uncertainty minimization. All our analyses were conducted using free available data from the Copernicus Sentinel-1 mission to support the operational transfer into the forest sector. Finally, the potential uncertainty affecting resulting height measures was quantified, showing that a value lower than 5 m can be expected once all user-dependent parameters (i.e., baseline, multilooking factor, temporal baseline) are properly tuned.

Publisher

MDPI AG

Subject

Media Technology

Reference55 articles.

1. Allometric Models for Tree Volume and Total Aboveground Biomass in a Tropical Humid Forest in Costa Rica;Segura;Biotrop. J. Biol. Conserv.,2005

2. Tree height in tropical forest as measured by different ground, proximal, and remote sensing instruments, and impacts on above ground biomass estimates

3. Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest

4. Modeling canopy structure and heterogeneity across scales: From crowns to canopy

5. Forest Structure: A Key to the Ecosystem;Spies;Northwest Sci.,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3