Cattle Body Detection Based on YOLOv5-EMA for Precision Livestock Farming

Author:

Hao Wangli1,Ren Chao1,Han Meng1ORCID,Zhang Li1,Li Fuzhong1ORCID,Liu Zhenyu1

Affiliation:

1. School of Software, Shanxi Agricultural University, Jinzhong 030801, China

Abstract

Accurate cattle body detection is crucial for precision livestock farming. However, traditional cattle body detection methods rely on manual observation, which is both time-consuming and labor-intensive. Moreover, computer-vision-based methods suffer prolonged training times and training difficulties. To address these issues, this paper proposes a novel YOLOv5-EMA model for accurate cattle body detection. By incorporating the Efficient Multi-Scale Attention (EMA) module into the backbone of YOLO series detection models, the performance of detecting smaller targets, such as heads and legs, has been significantly improved. The Efficient Multi-Scale Attention (EMA) module utilizes the large receptive fields of parallel sub-networks to gather multi-scale spatial information and establishes mutual dependencies between different spatial positions, enabling cross-spatial learning. This enhancement empowers the model to gather and integrate more comprehensive feature information, thereby improving the effectiveness of cattle body detection. The experimental results confirm the good performance of the YOLOv5-EMA model, showcasing promising results across all quantitative evaluation metrics, qualitative detection findings, and visualized Grad-CAM heatmaps. To be specific, the YOLOv5-EMA model achieves an average precision (mAP@0.5) of 95.1% in cattle body detection, 94.8% in individual cattle detection, 94.8% in leg detection, and 95.5% in head detection. Moreover, this model facilitates the efficient and precise detection of individual cattle and essential body parts in complex scenarios, especially when dealing with small targets and occlusions, significantly advancing the field of precision livestock farming.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3