Improving Known–Unknown Cattle’s Face Recognition for Smart Livestock Farm Management

Author:

Meng Yao12ORCID,Yoon Sook3ORCID,Han Shujie12ORCID,Fuentes Alvaro12ORCID,Park Jongbin12ORCID,Jeong Yongchae1ORCID,Park Dong Sun12ORCID

Affiliation:

1. Department of Electronic Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

2. Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju 54896, Republic of Korea

3. Department of Computer Engineering, Mokpo National University, Mokpo 58554, Republic of Korea

Abstract

Accurate identification of individual cattle is of paramount importance in precision livestock farming, enabling the monitoring of cattle behavior, disease prevention, and enhanced animal welfare. Unlike human faces, the faces of most Hanwoo cattle, a native breed of Korea, exhibit significant similarities and have the same body color, posing a substantial challenge in accurately distinguishing between individual cattle. In this study, we sought to extend the closed-set scope (only including identifying known individuals) to a more-adaptable open-set recognition scenario (identifying both known and unknown individuals) termed Cattle’s Face Open-Set Recognition (CFOSR). By integrating open-set techniques to enhance the closed-set accuracy, the proposed method simultaneously addresses the open-set scenario. In CFOSR, the objective is to develop a trained model capable of accurately identifying known individuals, while effectively handling unknown or novel individuals, even in cases where the model has been trained solely on known individuals. To address this challenge, we propose a novel approach that integrates Adversarial Reciprocal Points Learning (ARPL), a state-of-the-art open-set recognition method, with the effectiveness of Additive Margin Softmax loss (AM-Softmax). ARPL was leveraged to mitigate the overlap between spaces of known and unknown or unregistered cattle. At the same time, AM-Softmax was chosen over the conventional Cross-Entropy loss (CE) to classify known individuals. The empirical results obtained from a real-world dataset demonstrated the effectiveness of the ARPL and AM-Softmax techniques in achieving both intra-class compactness and inter-class separability. Notably, the results of the open-set recognition and closed-set recognition validated the superior performance of our proposed method compared to existing algorithms. To be more precise, our method achieved an AUROC of 91.84 and an OSCR of 87.85 in the context of open-set recognition on a complex dataset. Simultaneously, it demonstrated an accuracy of 94.46 for closed-set recognition. We believe that our study provides a novel vision to improve the classification accuracy of the closed set. Simultaneously, it holds the potential to significantly contribute to herd monitoring and inventory management, especially in scenarios involving the presence of unknown or novel cattle.

Funder

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry

Korea Smart Farm Foundation

Ministry of Agriculture, Food and Rural Affairs

Ministry of Science and ICT

Rural Development Administration

National Research Foundation of Korea (NRF) funded by the Ministry of Education

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3