Heat Inactivation of Methicillin-Resistant Staphylococcus aureus Strains from German Dairy farms in Colostrum and Raw Milk

Author:

Wörmann Mirka E.1ORCID,Bhatte Ashwini1,Wichmann-Schauer Heidi1ORCID,Tenhagen Bernd-Alois1ORCID,Lienen Tobias1ORCID

Affiliation:

1. Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) may cause difficult-to-treat infections in dairy cattle. One possible route of MRSA transmission into calves is via the feeding of contaminated waste milk. We tested the heat resistance of 17 MRSA strains isolated from German dairy farms in colostrum and raw milk in a laboratory approach. Heating colostrum or raw milk at 60 °C for 30 min eliminated all viable MRSA in the milk, provided the MRSA inoculation rate is low (103 cfu mL−1). In contrast, raw milk highly inoculated with MRSA (106 cfu mL−1) required a holding time of at least 30 min at 70 °C to fully eliminate MRSA from it. However, quantitative analysis showed that a heat treatment for 10 min at 60 °C already significantly reduced the number of viable MRSA in highly inoculated raw milk. Heating colostrum and raw milk above 60 °C may destroy immunoglobulins which are crucial for the calf’s health. Therefore, we suggest that colostrum and raw milk that is to be fed to calves on MRSA-positive dairy farms is heated at 60 °C for at least 10 min to reduce the likelihood of transmitting MRSA. In addition, the 60 °C heat-treated colostrum/raw milk should be fed to the calves as soon as possible to avoid re-growth of viable MRSA.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3