Affiliation:
1. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract
Ship classification technology using synthetic aperture radar (SAR) has become a research hotspot. Many deep-learning-based methods have been proposed with handcrafted models or using transplanted computer vision networks. However, most of these methods are designed for graphics processing unit (GPU) platforms, leading to limited scope for application. This paper proposes a novel mini-size searched convolutional Metaformer (SCM) for classifying SAR ships. Firstly, a network architecture searching (NAS) algorithm with progressive data augmentation is proposed to find an efficient baseline convolutional network. Then, a transformer classifier is employed to improve the spatial awareness capability. Moreover, a ConvFormer cell is proposed by filling the searched normal convolutional cell into a Metaformer block. This novel cell architecture further improves the feature-extracting capability. Experimental results obtained show that the proposed SCM provides the best accuracy with only 0.46×106 weights, achieving a good trade-off between performance and model size.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献