Prediction of Land Surface Temperature Considering Future Land Use Change Effects under Climate Change Scenarios in Nanjing City, China

Author:

Tian Lei1ORCID,Tao Yu12,Li Mingyang1,Qian Chunhua3,Li Tao1ORCID,Wu Yi1,Ren Fang1

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. Anhui Province Key Laboratory of Physical Geographical Environment, Chuzhou 239000, China

3. College of Smart Agricultural, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China

Abstract

Land use and land cover (LULC) changes resulting from rapid urbanization are the foremost causes of increases in land surface temperature (LST) in urban areas. Exploring the impact of LULC changes on the spatiotemporal patterns of LST under future climate change scenarios is critical for sustainable urban development. This study aimed to project the LST of Nanjing for 2025 and 2030 under different climate change scenarios using simulated LULC and land coverage indicators. Thermal infrared data from Landsat images were used to derive spatiotemporal patterns of LST in Nanjing from 1990 to 2020. The patch-generating land use simulation (PLUS) model was applied to simulate the LULC of Nanjing for 2025 and 2030 using historical LULC data and spatial driving factors. We simulated the corresponding land coverage indicators using simulated LULC data. We then generated LSTs for 2025 and 2030 under different climate change scenarios by applying regression relationships between LST and land coverage indicators. The results show that the LST of Nanjing has been increasing since 1990, with the mean LST increased from 23.44 °C in 1990 to 25.40 °C in 2020, and the mean LST estimated to reach 26.73 °C in 2030 (SSP585 scenario, integrated scenario of SSP5 and RCP5.8). There were significant differences in the LST under different climate scenarios, with increases in LST gradually decreasing under the SSP126 scenario (integrated scenario of SSP1 and RCP2.6). LST growth was similar to the historical trend under the SSP245 scenario (integrated scenario of SSP2 and RCP4.5), and an extreme increase in LST was observed under the SSP585 scenario. Our results suggest that the increase in impervious surface area is the main reason for the LST increase and urban heat island (UHI) effect. Overall, we proposed a method to project future LST considering land use change effects and provide reasonable LST scenarios for Nanjing, which may be useful for mitigating the UHI effect.

Funder

National Natural Science Foundation of China

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Suzhou Polytechnic Institute of Agriculture Doctoral Promotion Program Research Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3