Abstract
A home-based, reliable, objective and automated assessment of motor performance of patients affected by Parkinson’s Disease (PD) is important in disease management, both to monitor therapy efficacy and to reduce costs and discomforts. In this context, we have developed a self-managed system for the automated assessment of the PD upper limb motor tasks as specified by the Unified Parkinson’s Disease Rating Scale (UPDRS). The system is built around a Human Computer Interface (HCI) based on an optical RGB-Depth device and a replicable software. The HCI accuracy and reliability of the hand tracking compares favorably against consumer hand tracking devices as verified by an optoelectronic system as reference. The interface allows gestural interactions with visual feedback, providing a system management suitable for motor impaired users. The system software characterizes hand movements by kinematic parameters of their trajectories. The correlation between selected parameters and clinical UPDRS scores of patient performance is used to assess new task instances by a machine learning approach based on supervised classifiers. The classifiers have been trained by an experimental campaign on cohorts of PD patients. Experimental results show that automated assessments of the system replicate clinical ones, demonstrating its effectiveness in home monitoring of PD.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献