Indoor Scene Recognition Mechanism Based on Direction-Driven Convolutional Neural Networks

Author:

Daou Andrea12ORCID,Pothin Jean-Baptiste2,Honeine Paul1ORCID,Bensrhair Abdelaziz1

Affiliation:

1. Univ Rouen Normandie, INSA Rouen Normandie, Université Le Havre Normandie, Normandie Univ, LITIS UR 4108, F-76000 Rouen, France

2. Department of Research and Development, DATAHERTZ, 10000 Troyes, France

Abstract

Indoor location-based services constitute an important part of our daily lives, providing position and direction information about people or objects in indoor spaces. These systems can be useful in security and monitoring applications that target specific areas such as rooms. Vision-based scene recognition is the task of accurately identifying a room category from a given image. Despite years of research in this field, scene recognition remains an open problem due to the different and complex places in the real world. Indoor environments are relatively complicated because of layout variability, object and decoration complexity, and multiscale and viewpoint changes. In this paper, we propose a room-level indoor localization system based on deep learning and built-in smartphone sensors combining visual information with smartphone magnetic heading. The user can be room-level localized while simply capturing an image with a smartphone. The presented indoor scene recognition system is based on direction-driven convolutional neural networks (CNNs) and therefore contains multiple CNNs, each tailored for a particular range of indoor orientations. We present particular weighted fusion strategies that improve system performance by properly combining the outputs from different CNN models. To meet users’ needs and overcome smartphone limitations, we propose a hybrid computing strategy based on mobile computation offloading compatible with the proposed system architecture. The implementation of the scene recognition system is split between the user’s smartphone and a server, which aids in meeting the computational requirements of CNNs. Several experimental analysis were conducted, including to assess performance and provide a stability analysis. The results obtained on a real dataset show the relevance of the proposed approach for localization, as well as the interest in model partitioning in hybrid mobile computation offloading. Our extensive evaluation demonstrates an increase in accuracy compared to traditional CNN scene recognition, indicating the effectiveness and robustness of our approach.

Funder

ANRT

DATAHERTZ Company

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3