Mechanistic Assessment of Cardiovascular State Informed by Vibroacoustic Sensors

Author:

Zare Ali1ORCID,Wittrup Emily1ORCID,Najarian Kayvan1234ORCID

Affiliation:

1. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48103, USA

2. Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48103, USA

3. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48103, USA

4. Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI 48103, USA

Abstract

Monitoring blood pressure, a parameter closely related to cardiovascular activity, can help predict imminent cardiovascular events. In this paper, a novel method is proposed to customize an existing mechanistic model of the cardiovascular system through feature extraction from cardiopulmonary acoustic signals to estimate blood pressure using artificial intelligence. As various factors, such as drug consumption, can alter the biomechanical properties of the cardiovascular system, the proposed method seeks to personalize the mechanistic model using information extracted from vibroacoustic sensors. Simulation results for the proposed approach are evaluated by calculating the error in blood pressure estimates compared to ground truth arterial line measurements, with the results showing promise for this method.

Funder

Collaborative Safety Research Center at Toyota Motor Engineering & Manufacturing North America, Inc

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3