Radar Data Integrity Verification Using 2D QIM-Based Data Hiding

Author:

Changalvala RaghuORCID,Fedoruk BrandonORCID,Malik HafizORCID

Abstract

The modern-day vehicle is evolved in a cyber-physical system with internal networks (controller area network (CAN), Ethernet, etc.) connecting hundreds of micro-controllers. From the traditional core vehicle functions, such as vehicle controls, infotainment, and power-train management, to the latest developments, such as advanced driver assistance systems (ADAS) and automated driving features, each one of them uses CAN as their communication network backbone. Automated driving and ADAS features rely on data transferred over the CAN network from multiple sensors mounted on the vehicle. Verifying the integrity of the sensor data is essential for the safety and security of occupants and the proper functionality of these applications. Though the CAN interface ensures reliable data transfer, it lacks basic security features, including message authentication, which makes it vulnerable to a wide array of attacks, including spoofing, replay, DoS, etc. Using traditional cryptography-based methods to verify the integrity of data transmitted over CAN interfaces is expected to increase the computational complexity, latency, and overall cost of the system. In this paper, we propose a light-weight alternative to verify the sensor data’s integrity for vehicle applications that use CAN networks for data transfers. To this end, a framework for 2-dimensional quantization index modulation (2D QIM)-based data hiding is proposed to achieve this goal. Using a typical radar sensor data transmission scenario in an autonomous vehicle application, we analyzed the performance of the proposed framework regarding detecting and localizing the sensor data tampering. The effects of embedding-induced distortion on the applications using the radar data were studied through a sensor fusion algorithm. It was observed that the proposed framework offers the much-needed data integrity verification without compromising on the quality of sensor fusion data and is implemented with low overall design complexity. This proposed framework can also be used on any physical network interface other than CAN, and it offers traceability to in-vehicle data beyond the scope of the in-vehicle applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Systematic Review on Security Attacks and Countermeasures in Automotive Ethernet;ACM Computing Surveys;2024-01-22

2. Threat Analysis of Position, Navigation, and Timing for Highly Automated Vehicles;2023 IEEE/ION Position, Location and Navigation Symposium (PLANS);2023-04-24

3. A Review on Human–Machine Trust Evaluation: Human-Centric and Machine-Centric Perspectives;IEEE Transactions on Human-Machine Systems;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3