Evaluation of the Physicochemical Properties and Antiaging Properties of Bitumen Mastic Modified by Layered Double Hydroxides

Author:

Zou Yingxue1,Pang Ling1,Chen Shuaichao1,Xu Shi23ORCID,Wu Shaopeng1,Amirkhanian Serji4,Xu Haiqin1,Zhao Zenggang1ORCID

Affiliation:

1. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China

2. School of Civil Engineering and Architecture, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China

3. Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands

4. Department of Civil Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL 35487, USA

Abstract

Layered double hydroxides (LDHs) can shield polymeric materials from UV light, which allows reducing material aging and erosion damage of bituminous pavement under physical and chemical action. In this study, the physicochemical properties, aging resistance, and erosion resistance to the aqueous solution of LDHs modified bitumen mastic (BM) were characterized by Fourier-transform infrared spectroscopy, basic physical tests, viscosity tests, a dynamic shear rheometer, and a bending beam rheometer. The results show that few chemical reactions occurred between LDHs and BM, indicating that a physical mechanism underlay the modification of BM by LDHs. Moreover, LDHs could increase the flow activation energy of BM by 0.12%, increase the high failure temperature from 69.07 °C to 71.07 °C, and decrease the low failure temperature from −10.50 °C to −12.39 °C. Therefore, LDHs could slightly reduce the temperature sensitivity of BM, while slightly enhancing the high and low-temperature rheological properties of BM. Compared with short-term aging and long-term aging, LDHs could significantly improve the UV aging resistance of BM. The above results are consistent with previous studies of LDHs-modified bitumen. Furthermore, water and pH 3 acidic solutions had the greatest degree of erosion to BM, and LDHs could improve the resistance to aqueous solutions. Overall, this study can help to investigate the effects of various environmental factors on the performance of LDHs modified bitumen pavements during long-term use.

Funder

National Natural Science Foundation of China

Independent Innovation Foundation of Wuhan University of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3