A Sustainable Digital Ecosystem: Digital Servitization Transformation and Digital Infrastructure Support

Author:

Chen Yan,Wang Zijin,Ortiz JaimeORCID

Abstract

While the notion of digitalization and sustainability has become prominent in current research, more can be done to bridge these two concepts and explain the interaction between them. Plenty of literature has focused on the impact of digital technology applications and business model innovations on environmental performance but has not considered the counterforce of environmental performance on digitalization. We investigated this question from the perspective of digital ecosystem architects to explore more organic relationships. By analyzing data from 1083 listed firms from 2014 to 2019, we found various effective paths for architects to participate in the digital ecosystem and determined that improved environmental performance has led to more efficient convergence. Digital servitization adopted by private architects contributes to financial performance, whereas the addition of digital infrastructure enables public architects to play a greater role. This is reflected in the discovery that firms with “high” environmental performance can improve their financial performance far more significantly with the help of digital servitization compared to other firms. However, digital infrastructure development can benefit all firms almost indiscriminately. We encourage firms and governments to work together to strengthen digital infrastructure, build digital ecosystems, and focus on environmental performance while transitioning to digital servitization.

Funder

National Natural Science Foundation of China

Key consulting projects of the Chinese Academy of Sciences

Major consulting projects of the Chinese Academy of Engineering

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3