Random Forest Ensemble-Based Predictions of On-Road Vehicular Emissions and Fuel Consumption in Developing Urban Areas

Author:

Hassan Muhammed A.ORCID,Salem Hindawi,Bailek NadjemORCID,Kisi OzgurORCID

Abstract

The transportation sector is one of the primary sources of air pollutants in megacities. Strict regulations of newly added vehicles to the local market require precise prediction models of their fuel consumption (FC) and emission rates (ERs). Simple empirical and complex analytical models are widely used in the literature, but they are limited due to their low prediction accuracy and high computational costs. The public literature shows a significant lack of machine learning applications related to onboard vehicular emissions under real-world driving conditions due to the immense costs of required measurements, especially in developing countries. This work introduces random forest (RF) ensemble models, for the urban areas of Greater Cairo, a metropolitan city in Egypt, based on large datasets of precise measurements using 87 representative passenger cars and 10 typical driving routes. Five RF models are developed for predicting FC, as well as CO2, CO, NOx, and hydrocarbon (HC) ERs. The results demonstrate the reliability of RF models in predicting the first four variables, with up to 97% of the data variance being explained. Only the HC model is found less reliable due to the diversity of considered vehicle models. The relative influences of different model inputs are demonstrated. The FC is the most influential input (relative importance of >23%) for CO2, CO, and NOx predictions, followed by the engine speed and the vehicle category. Finally, it is demonstrated that the prediction accuracy of all models can be further improved by up to 97.8% by limiting the training dataset to a single-vehicle category.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3