A New Type of Hydraulic Clutch with Magnetorheological Fluid: Theory and Experiment

Author:

Musiałek Karol1ORCID,Musiałek Ireneusz1,Osowski Karol2,Olszak Artur3,Mikulska Aneta2,Kęsy Zbigniew1ORCID,Kęsy Andrzej1,Choi Seung-Bok45ORCID

Affiliation:

1. Mechatronics Division, Jan Kochanowski University of Kielce, 25-369 Kielce, Poland

2. Faculty of Mechanical Engineering, Casimir Pulaski Radom University, 26-600 Radom, Poland

3. Łukasiewicz Research Network—New Chemical Syntheses Institute, 24-110 Puławy, Poland

4. Department of Mechanical Engineering, The State University of New York, Korea (SUNY Korea), Incheon 21985, Republic of Korea

5. Department of Mechanical Engineering, Industrial University of Ho Chi Minh City (IUH), Ho Chi Minh City 70000, Vietnam

Abstract

This paper presents a new type of hydraulic clutch operating by means of magnetorheological (MR) fluids and the results achieved from both theoretical analysis and experimental measurement. A hydraulic clutch system with MR working fluid and a rotating magnetic field located was designed. The clutch was based on the principle of using a rotating magnetic field created by an alternating current electromagnet to set the MR fluid in motion. To test the hydraulic clutch with a rotating magnetic field, MR fluids were produced by our laboratory, consisting of solid iron particles of various diameters mixed with a silicone oil. With MR working fluid and a rotating magnetic core was designed. The rheological properties of the MR fluids were assessed on the basis of tests carried out with a Brookfield DV2T rheometer equipped with a magnetic device for generating a magnetic field. The characteristics of the hydraulic clutch were tested on a specially built test stand. It was found that the torque transmitted by the clutch increased with the rotational speed of the magnetic field and with a lower rotational speed of the beaker in which the working fluid was placed. It was also found that the greatest torque occurred with the working fluid with the highest iron content. Based on the analysis of the structure and characteristics of the clutch in which the magnetic field is used, it has been shown that the design of the developed clutch is similar to that of an induction clutch, and its characteristics correspond to the characteristics of the eddy current clutch. Therefore, the proposed new clutch with MR fluid and rotating magnetic field can be applied to stationary power transmission systems in a manner similar to an eddy current clutch.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3