The Quality of Sequence Data Affects Biodiversity and Conservation Perspectives in the Neotropical Damselfly Megaloprepus caerulatus

Author:

Feindt WiebkeORCID,Hadrys Heike

Abstract

Ideally, the footprint of the evolutionary history of a species is drawn from integrative studies including quantitative and qualitative taxonomy, biogeography, ecology, and molecular genetics. In today’s research, species delimitations and identification of conservation units is often accompanied by a set of—at minimum—two sequence markers appropriate for the systematic level under investigation. Two such studies re-evaluated the species status in the world’s largest Odonata, the Neotropical damselfly Megaloprepus caerulatus. The species status of the genus Megaloprepus has long been debated. Despite applying a highly similar set of sequence markers, the two studies reached different conclusions concerning species status and population genetic relationships. In this study, we took the unique opportunity to compare the two datasets and analyzed the reasons for those incongruences. The two DNA sequence markers used (16S rDNA and CO1) were re-aligned using a strict conservative approach and the analyses used in both studies were repeated. Going step by step back to the first line of data handling, we show that a high number of unresolved characters in the sequence alignments as well as internal gaps are responsible for the different outcomes in terms of species delimitations and population genetic relationships. Overall, this study shows that high quality raw sequence data are an indispensable requirement, not only in odonate research.

Funder

Deutsche Forschungsgemeinschaft

University of Veterinary Medicine Hannover, Foundation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3