Methodology for Neural Network-Based Material Card Calibration Using LS-DYNA MAT_187_SAMP-1 Considering Failure with GISSMO

Author:

Meißner PaulORCID,Winter JensORCID,Vietor ThomasORCID

Abstract

A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element simulations. Contrary to the conventionally used computationally intensive material parameter identification (MPI) by numerical optimization with internal or commercial software, a machine learning (ML)-based method is time saving when used repeatedly. Within this article, a self-developed ML-based Python framework is presented, which offers advantages, especially in the development of structural components in early development phases. In this procedure, different machine learning methods are used and adapted to the specific MPI problem considered herein. Using the developed NN-based and the common optimization-based method with LS-OPT, the material parameters of the LS-DYNA material card MAT_187_SAMP-1 and the failure model GISSMO were exemplarily calibrated for a virtually generated test dataset. Parameters for the description of elasticity, plasticity, tension–compression asymmetry, variable plastic Poisson’s ratio (VPPR), strain rate dependency and failure were taken into account. The focus of this paper is on performing a comparative study of the two different MPI methods with varying settings (algorithms, hyperparameters, etc.). Furthermore, the applicability of the NN-based procedure for the specific usage of both material cards was investigated. The studies reveal the general applicability for the calibration of a complex material card by the example of the used MAT_187_SAMP-1.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3