Study on Generating Machining Performance of Two-Dimensional Ultrasonic Vibration-Composited Electrolysis/Electro-Discharge Technology for MMCs

Author:

Li Jing,Chen Wanwan,Zhu Yongwei

Abstract

Ultrasonic vibration-composited electrolysis/electro-discharge machining technology (UE/DM) is effective for machining particulate-reinforced metal matrix composites (MMCs). However, the vibration of the tool or workpiece suitable for holes limits the application of UE/DM. To improve the generating machining efficiency and quality of flat and curved surfaces, in this study, we implemented two-dimensional ultrasonic vibration into UE/DM and constructed a novel method named two-dimensional ultrasonic vibration-composited electrolysis/electro-discharge machining (2UE/DM). The influence of vibration on the performance of 2UE/DM compared to other process technologies was studied, and an orthogonal experiment was designed to optimize the parameters. The results indicated that the materiel remove rate (MRR) mainly increased via voltage and tool vibration. The change current was responsible for the MRR in the process. Spindle speed and workpiece vibration were not dominant factors affecting the MRR; the spindle speed and tool and workpiece vibration, which reduced the height difference between a ridge and crater caused by abrasive grinding, were responsible for surface roughness (Ra) and form precision (δ). Additionally, the optimized parameters of 1000 rpm, 3 V, and 5 um were conducted on MMCs of 40 SiCp/Al and achieved the maximum MRR and minimum Ra and δ of 0.76 mm3/min, 3.35 um, and 5.84%, respectively. This study’s findings provide valuable process parameters for improving machining efficiency and quality for MMCs of 2UE/DM.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3