Effects of Low-Temperature Construction Additives (LCAs) on the Performance of Asphalt Mixtures

Author:

Li YuanyuanORCID,Feng Jianlin,Chen Anqi,Wu Fan,Wu Shaopeng,Liu Quantao,Gong Ruifang

Abstract

Green production of asphalt materials is very important to promote energy savings and emission reduction during the construction and maintenance of asphalt pavement. A low-temperature construction additive (LCA) made from the waste plastic and waste rubber is proposed, which belongs to a class of environmentally friendly additives for asphalt mixtures. Marshall stability was tested to evaluate the mechanical performance of LCA-modified asphalt mixtures (LCA-AMs). In order to determine the best preparation parameters of LCA-AMs, the influence of the content and LCA addition method on the strength of LCA-AMs was studied. In addition, the impact of epoxy resin (ER) on the mixtures’ performances was evaluated. The results show that the LCA can significantly reduce the formation temperature of asphalt mixtures, and the resulting asphalt mixtures have good workability in a lower temperature range (90–110 °C). The ER should be added to the LCA-AMs after 4 h of curing. All the volumetric properties satisfy the technical requirements. The low-temperature crack resistance and fatigue resistance of LCA-AMs were obviously improved with appropriate dosages of ER, which can effectively improve the mechanical performance of the asphalt mixtures. The ER can significantly increase the rutting resistance and water sensitivity of LCA-AMs, therefore making it feasible to improve the mixture performance by the enhancement provided by a low dosage of ER.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incorporation of plastic waste into road pavements: A systematic literature review on the fatigue and rutting performances;Construction and Building Materials;2023-12

2. Advances in Regenerated Asphalt Mixtures;Materials;2023-04-04

3. Introduction of “Cold Mix Asphalt” as a sustainable & green construction method to Sri Lankan roads constructions;SUSTAINABLE DEVELOPMENTS IN MATERIALS SCIENCE, TECHNOLOGY AND ENGINEERING: Sustainable Development in Material Science of Today Is the Innovation of Tomorrow;2023

4. Research on Design and Performance of Self-Compacting Cement Emulsified Bitumen Mixture (CEBM);Materials;2022-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3