Newly Built Construction Detection in SAR Images Using Deep Learning

Author:

Jaturapitpornchai Raveerat,Matsuoka MasashiORCID,Kanemoto Naruo,Kuzuoka Shigeki,Ito Riho,Nakamura Ryosuke

Abstract

Remote sensing data can be utilized to help developing countries monitor the use of land. However, the problem of constant cloud coverage prevents us from taking full advantage of satellite optical images. Therefore, we instead opt to use data from synthetic-aperture radar (SAR), which can capture images of the Earth’s surface regardless of the weather conditions. In this study, we use SAR data to identify newly built constructions. Most studies on change detection tend to detect all of the changes that have a similar temporal change characteristic occurring on two occasions, while we want to identify only the constructions and avoid detecting other changes such as the seasonal change of vegetation. To do so, we study various deep learning network techniques and have decided to propose the fully convolutional network with a skip connection. We train this network with pairs of SAR data acquired on two different occasions from Bangkok and the ground truth, which we manually create from optical images available from Google Earth for all of the SAR pairs. Experiments to assign the most suitable patch size, loss weighting, and epoch number to the network are discussed in this paper. The trained model can be used to generate a binary map that indicates the position of these newly built constructions precisely with the Bangkok dataset, as well as with the Hanoi and Xiamen datasets with acceptable results. The proposed model can even be used with SAR images of the same specific satellite from another orbit direction and still give promising results.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3