Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data

Author:

Zhang Linjing,Shao Zhenfeng,Liu Jianchen,Cheng Qimin

Abstract

Estimation of forest aboveground biomass (AGB) is crucial for various technical and scientific applications, ranging from regional carbon and bioenergy policies to sustainable forest management. However, passive optical remote sensing, which is the most widely used remote sensing data for retrieving vegetation parameters, is constrained by spectral saturation problems and cloud cover. On the other hand, LiDAR data, which have been extensively used to estimate forest structure attributes, cannot provide sufficient spectral information of vegetation canopies. Thus, this study aimed to develop a novel synergistic approach to estimating biomass by integrating LiDAR data with Landsat 8 imagery through a deep learning-based workflow. First the relationships between biomass and spectral vegetation indices (SVIs) and LiDAR metrics were separately investigated. Next, two groups of combined optical and LiDAR indices (i.e., COLI1 and COLI2) were designed and explored to identify their performances in biomass estimation. Finally, five prediction models, including K-nearest Neighbor, Random Forest, Support Vector Regression, the deep learning model, i.e., Stacked Sparse Autoencoder network (SSAE), and multiple stepwise linear regressions, were individually used to estimate biomass with input variables of different scenarios, i.e., (i) all the COLI1 (ACOLI1), (ii) all the COLI2 (ACOLI2), (iii) ACOLI1 and all the optical (AO) and LiDAR variables (AL), and (iv) ACOLI2, AO and AL. Results showed that univariate models with the combined optical and LiDAR indices as explanatory variables presented better modeling performance than those with either optical or LiDAR data alone, regardless of the combination mode. The SSAE model obtained the best performance compared to the other tested prediction algorithms for the forest biomass estimation. The best predictive accuracy was achieved by the SSAE model with inputs of combined optical and LiDAR variables (i.e., ACOLI1, AO and AL) that yielded an R2 of 0.935, root mean squared error (RMSE) of 15.67 Mg/ha, and relative root mean squared error (RMSEr) of 11.407%. It was concluded that the presented combined indices were simple and effective by integrating LiDAR-derived structure information with Landsat 8 spectral data for estimating forest biomass. Overall, the SSAE model with inputs of Landsat 8 and LiDAR integrated information resulted in accurate estimation of forest biomass. The presented modeling workflow will greatly facilitate future forest biomass estimation and carbon stock assessments.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3