Prediction of High-Quality MODIS-NPP Product Data

Author:

Liu Zhenhua,Wang Ting,Qu YonghuaORCID,Liu Huiming,Wu Xiaofang,Wen Ya

Abstract

Net primary productivity (NPP) is a key vegetation parameter and ecological indicator for tracking natural environmental change. High-quality Moderate Resolution Imaging Spectroradiometer Net primary productivity (MODIS-NPP) products are critical for assuring the scientific rigor of NPP analyses. However, obtaining high-quality MODIS-NPP products consistently is challenged by factors such as cloud contamination, heavy aerosol pollution, and atmospheric variability. This paper proposes a method combining the discrete wavelet transform (DWT) with an extended Kalman filter (EKF) for generating high-quality MODIS-NPP data. In this method, the DWT is used to remove noise in the original MODIS-NPP data, and the EKF is applied to the de-noised images. The de-noised images are modeled as a triply modulated cosine function that predicts the NPP data values when excessive cloudiness is present. This study was conducted in South China. By comparing measured NPP data to original MODIS-NPP and NPP estimates derived from combining the DWT and EKF, we found that the accuracy of the NPP estimates was significantly improved. The MODIS-NPP estimates had a mean relative error (RE) of 13.96% and relative root mean square error (rRMSE) of 15.67%, while the original MODIS-NPP had a mean RE of 23.58% and an rRMSE of 24.98%. The method combining DWT and EKF provides a feasible approach for generating new, high-quality NPP data in the absence of high-quality original MODIS-NPP data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3