Multitemporal Chlorophyll Mapping in Pome Fruit Orchards from Remotely Piloted Aircraft Systems

Author:

Vanbrabant Yasmin,Tits Laurent,Delalieux Stephanie,Pauly Klaas,Verjans Wim,Somers Ben

Abstract

Early and precise spatio-temporal monitoring of tree vitality is key for steering management decisions in pome fruit orchards. Spaceborne remote sensing instruments face a tradeoff between spatial and spectral resolution, while manned aircraft sensor-platform systems are very expensive. In order to address the shortcomings of these platforms, this study investigates the potential of Remotely Piloted Aircraft Systems (RPAS) to facilitate rapid, low cost, and flexible chlorophyll monitoring. Due to the complexity of orchard scenery a robust chlorophyll retrieval model on RPAS level has not yet been developed. In this study, specific focus therefore lies on evaluating the sensitivity of retrieval models to confounding factors. For this study, multispectral and hyperspectral imagery was collected over pome fruit orchards. Sensitivities of both univariate and multivariate retrieval models were demonstrated under different species, phenology, shade, and illumination scenes. Results illustrate that multivariate models have a significantly higher accuracy than univariate models as the former provide accuracies for the canopy chlorophyll content retrieval of R2 = 0.80 and Relative Root Mean Square Error (RRMSE) = 12% for the hyperspectral sensor. Random forest regression on multispectral imagery (R2 > 0.9 for May, June, July, and August, and R2 = 0.5 for October) and hyperspectral imagery (0.6 < R2 < 0.9) led to satisfactory high and consistent accuracies for all months.

Funder

Fonds Wetenschappelijk Onderzoek

Belgian Federal Science Policy Office

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3