Generating Red-Edge Images at 3 M Spatial Resolution by Fusing Sentinel-2 and Planet Satellite Products

Author:

Li Wei,Jiang Jiale,Guo Tai,Zhou Meng,Tang Yining,Wang Ying,Zhang Yu,Cheng TaoORCID,Zhu YanORCID,Cao Weixing,Yao Xia

Abstract

High-resolution satellite images can be used to some extent to mitigate the mixed-pixel problem caused by the lack of intensive production, farmland fragmentation, and the uneven growth of field crops in developing countries. Specifically, red-edge (RE) satellite images can be used in this context to reduce the influence of soil background at early stages as well as saturation due to crop leaf area index (LAI) at later stages. However, the availability of high-resolution RE satellite image products for research and application globally remains limited. This study uses the weight-and-unmixing algorithm as well as the SUPer-REsolution for multi-spectral Multi-resolution Estimation (Wu-SupReME) approach to combine the advantages of Sentinel-2 spectral and Planet spatial resolution and generate a high-resolution RE product. The resultant fused image is highly correlated (R2 > 0.98) with Sentinel-2 image and clearly illustrates the persistent advantages of such products. This fused image was significantly more accurate than the originals when used to predict heterogeneous wheat LAI and therefore clearly illustrated the persistence of Sentinel-2 spectral and Planet spatial advantage, which indirectly proved that the fusion methodology of generating high-resolution red-edge products from Planet and Sentinel-2 images is possible. This study provided method reference for multi-source data fusion and image product for accurate parameter inversion in quantitative remote sensing of vegetation.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Jiangsu Qinglan Project, the Fundamental Research Funds for the Central Universities

111 project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3