Crop NDVI Monitoring Based on Sentinel 1

Author:

Filgueiras RobertoORCID,Mantovani Everardo ChartuniORCID,Althoff DanielORCID,Fernandes Filho Elpídio InácioORCID,Cunha Fernando França daORCID

Abstract

Monitoring agricultural crops is necessary for decision-making in the field. However, it is known that in some regions and periods, cloud cover makes this activity difficult to carry out in a systematic way throughout the phenological cycle of crops. This circumstance opens up opportunities for techniques involving radar sensors, resulting in images that are free of cloud effects. In this context, the objective of this work was to obtain a normalized different vegetation index (NDVI) cloudless product (NDVInc) by modeling Sentinel 2 NDVI using different regression techniques and the Sentinel 1 radar backscatter as input. To do this, we used four pairs of Sentinel 2 and Sentinel 1 images on coincident days, aiming to achieve the greatest range of NDVI values for agricultural crops (soybean and maize). These coincident pairs were the only ones in which the percentage of clouds was not equal to 100% for 33 central pivot areas in western Bahia, Brazil. The dataset used for NDVInc modeling was divided into two subsets: training and validation. The training and validation datasets were from the period from 24 June 2017 to 19 July 2018 (four pairs of images). The best performing model was used in a temporal analysis from 02 October 2017 to 08 August 2018, totaling 55 Sentinel 2 images and 25 Sentinel 1 images. The selection of the best regression algorithm was based on two validation methodologies: K-fold cross-validation (k = 10) and holdout. We tested four modeling approaches with eight regression algorithms. The random forest was the algorithm that presented the best statistical metrics, regardless of the validation methodology and the approach used. Therefore, this model was applied to a time series of Sentinel 1 images in order to demonstrate the robustness and applicability of the model created. We observed that the data derived from Sentinel 1 allowed us to model, with great reliability, the NDVI of agricultural crops throughout the phenological cycle, making the methodology developed in this work a relevant solution for the monitoring of various regions, regardless of cloud cover.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3