Identify and Monitor Growth Faulting Using InSAR over Northern Greater Houston, Texas, USA

Author:

Qu Feifei,Lu ZhongORCID,Kim Jin-WooORCID,Zheng Weiyu

Abstract

Growth faults are widely distributed in the Greater Houston (GH) region of Texas, USA, and the existence of faulting could interrupt groundwater flow and aggravate local deformation. Faulting-induced property damages have become more pronounced over the last few years, necessitating further investigation of these faults. Interferometric synthetic aperture radar (InSAR) has been proved to be an effective way for mapping deformations along and/or across fault traces. However, extracting short-wavelength small-amplitude creep signal (about 10–20 mm/yr) from long time span interferograms is extremely difficult, especially in agricultural or vegetated areas. This study aims to position, map and monitor the rate, extent, and temporal evolution of faulting over GH at the highest spatial density using Multi-temporal InSAR (MTI) technique. The MTI method, which maximizes usable signal and correlation, has the ability to identify and monitor faulting and provide accurate and detailed depiction of active faults. Two neighboring L-band Advanced Land Observing (ALOS) tracks (2007–2011) are utilized in this research. Numerous areas of sharp phase discontinuities have been discerned from MTI-derived velocity map. InSAR measurements allow us to position both previously known faults traces as well as nucleation of new fractures not previously revealed by other ground/space techniques. Faulting damages and surface scarps were evident at most InSAR-mapped fault locations through our site investigations. The newly discovered fault activation appears to be related to excessive groundwater exploitation from the Jasper aquifer in Montgomery County. The continuous mining of groundwater from the Jasper aquifer formed new water-level decline cones over Montgomery County, corroborating the intensity of new fractures. Finally, we elaborate the localized fault activities and evaluate the characteristics of faulting (locking depth and slip rate) through modeling MTI-derived deformation maps. The SW–NE-oriented faults pertain to normal faulting with an average slip rate of 7–13 mm/yr at a shallow locking depth of less than 4 km. Identifying and characterizing active faults through MTI and deformation modeling can provide insights into faulting, its causal mechanism and potential damages to infrastructure over the GH.

Funder

NASA Surface and Interior Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference104 articles.

1. Growth Faulting and Subsidence in the Houston, Texas Area: Guide to the Origins, Relationships, Hazards, Potential Impacts and Methods of Investigation;Campbell,2015

2. Growth faulting and subsidence in the Houston, Texas area: Guide to the origins, relationships, hazards, potential impacts and methods of investigation: An update;Campbell;J. Geol. Geosci.,2018

3. Historically Active Faults in the Houston Metropolitan Area, Texas;Verbeek,1981

4. Near-surface geophysical studies of Houston faults

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3