High-Resolution Secretome Analysis of Chemical Hypoxia Treated Cells Identifies Putative Biomarkers of Chondrosarcoma

Author:

Spanò Donatella PiaORCID,Bonelli Simone,Calligaris Matteo,Carreca Anna PaolaORCID,Carcione Claudia,Zito Giovanni,Nicosia AldoORCID,Rizzo Sergio,Scilabra Simone Dario

Abstract

Chondrosarcoma is the second most common bone tumor, accounting for 20% of all cases. Little is known about the pathology and molecular mechanisms involved in the development and in the metastatic process of chondrosarcoma. As a consequence, there are no approved therapies for this tumor and surgical resection is the only treatment currently available. Moreover, there are no available biomarkers for this type of tumor, and chondrosarcoma classification relies on operator-dependent histopathological assessment. Reliable biomarkers of chondrosarcoma are urgently needed, as well as greater understanding of the molecular mechanisms of its development for translational purposes. Hypoxia is a central feature of chondrosarcoma progression. The hypoxic tumor microenvironment of chondrosarcoma triggers a number of cellular events, culminating in increased invasiveness and migratory capability. Herein, we analyzed the effects of chemically-induced hypoxia on the secretome of SW 1353, a human chondrosarcoma cell line, using high-resolution quantitative proteomics. We found that hypoxia induced unconventional protein secretion and the release of proteins associated to exosomes. Among these proteins, which may be used to monitor chondrosarcoma development, we validated the increased secretion in response to hypoxia of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme well-known for its different functional roles in a wide range of tumors. In conclusion, by analyzing the changes induced by hypoxia in the secretome of chondrosarcoma cells, we identified molecular mechanisms that can play a role in chondrosarcoma progression and pinpointed proteins, including GAPDH, that may be developed as potential biomarkers for the diagnosis and therapeutic management of chondrosarcoma.

Funder

Fondazione CON IL SUD

Publisher

MDPI AG

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3