Multiscale Attention Fusion for Depth Map Super-Resolution Generative Adversarial Networks

Author:

Xu Dan1ORCID,Fan Xiaopeng12,Gao Wen23

Affiliation:

1. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China

2. Pengcheng Laboratory, Shenzhen 518052, China

3. School of Electronic Engineering and Computer Science, Peking University, Beijing 100871, China

Abstract

Color images have long been used as an important supplementary information to guide the super-resolution of depth maps. However, how to quantitatively measure the guiding effect of color images on depth maps has always been a neglected issue. To solve this problem, inspired by the recent excellent results achieved in color image super-resolution by generative adversarial networks, we propose a depth map super-resolution framework with generative adversarial networks using multiscale attention fusion. Fusion of the color features and depth features at the same scale under the hierarchical fusion attention module effectively measure the guiding effect of the color image on the depth map. The fusion of joint color–depth features at different scales balances the impact of different scale features on the super-resolution of the depth map. The loss function of a generator composed of content loss, adversarial loss, and edge loss helps restore clearer edges of the depth map. Experimental results on different types of benchmark depth map datasets show that the proposed multiscale attention fusion based depth map super-resolution framework has significant subjective and objective improvements over the latest algorithms, verifying the validity and generalization ability of the model.

Funder

National High Technology Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TM-GAN: A Transformer-Based Multi-Modal Generative Adversarial Network for Guided Depth Image Super-Resolution;IEEE Journal on Emerging and Selected Topics in Circuits and Systems;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3