Effects of the Ball Milling Process on the Particle Size of Graphene Oxide and Its Application in Enhancing the Thermal Conductivity of Wood

Author:

Zhang Na,Mao Yiqun,Wu Shuangshuang,Xu Wei

Abstract

To improve the dispersion of graphene oxide particles in wood for better thermal conductivity, this paper proposes the feasibility of obtaining graphene oxide with a smaller particle size using ball milling and its application in melamine resin-modified poplar veneer. The median diameter of multilayer graphene oxide was measured to learn the effects of different ball milling conditions on the particle size of graphene oxide, and the optimum ball milling process was chosen. In addition, the microscopic characterization of graphene oxide under the optimum ball milling process was carried out to investigate the microstructural changes in multilayer graphene after ball milling. Furthermore, the thermal conductivity of the graphene oxide/melamine resin-impregnated mixture modified veneer with the optimum ball milling process was also tested. The results show that, under the optimum ball milling process conditions of SDS wet ball milling with a vibration frequency of 30 Hz for 60 min, the particle size of the multilayer graphene was the smallest, and the median diameter could be reduced to 124 nm. Simultaneously, the thermal conductivity of the melamine resin-modified poplar veneer enhanced by the ball-milled graphene reached 0.405 W·m−1·K−1. In addition, it revealed that the number of graphene oxide layers was reduced to four after ball milling. However, the multilayer graphene was partially oxidized, the lamellar structure was destroyed and the crystallinity was reduced.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3