Abstract
In the context of climate change, the impact of hydro-meteorological extremes, such as floods and droughts, has become one of the most severe issues for the governors of mega-cities. The main purpose of this study is to assess the spatiotemporal changes in extreme precipitation indices over Ho Chi Minh City, Vietnam, between the near (2021–2050) and intermediate (2051–2080) future periods with respect to the baseline period (1980–2009). The historical extreme indices were calculated through observed daily rainfall data at 11 selected meteorological stations across the study area. The future extreme indices were projected based on a stochastic weather generator, the Long Ashton Research Station Weather Generator (LARS-WG), which incorporates climate projections from the Coupled Model Intercomparison Project 5 (CMIP5) ensemble. Eight extreme precipitation indices, such as the consecutive dry days (CDDs), consecutive wet days (CWDs), number of very heavy precipitation days (R20mm), number of extremely heavy precipitation days (R25mm), maximum 1 d precipitation amount (RX1day), maximum 5 d precipitation amount (RX5day), very wet days (R95p), and simple daily intensity index (SDII) were selected to evaluate the multi-model ensemble mean changes of extreme indices in terms of intensity, duration, and frequency. The statistical significance, stability, and averaged magnitude of trends in these changes, thereby, were computed by the Mann-Kendall statistical techniques and Sen’s estimator, and applied to each extreme index. The results indicated a general increasing trend in most extreme indices for the future periods. In comparison with the near future period (2021–2050), the extreme intensity and frequency indices in the intermediate future period (2051–2080) present more statistically significant trends and higher growing rates. Furthermore, an increase in most extreme indices mainly occurs in some parts of the central and southern regions, while a decrease in those indices is often projected in the north of the study area.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference65 articles.
1. The Global Risks Report 2019,2019
2. Summary for Policymakers,2013
3. Summary for Policymakershttps://www.ipcc.ch/report/ar5/wg2/summary-for-policymakers
4. Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China
5. Long-term change of daily and multi-daily precipitation in southern Sweden
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献