Preliminary Study on the Feasibility of Radiation Technique for Mural Protection

Author:

Wang Zesheng12,Luo Min2,Shao Yang2,Ma Lingling2,Wu Minghong1

Affiliation:

1. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China

2. Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract

Murals are a significant cultural heritage of humanity, and one of the conservation studies is to control the growth of microorganisms. General biocide agents can be used to preserve murals while also providing new organic carbon sources and increasing environmental pollution. In recent years, radiation technology has shown promising prospects for use in heritage protection. Five microorganisms often found in murals were irradiated with an electron beam in this study, and six mineral pigments were tested for color change, Raman spectra and pigment layer cohesion after irradiation. The result showed that irradiation at 20 kGy can basically eliminate Pseudomonas citronellolis, Bacillus sporothermodurans, Streptomyces vinaceus, and Streptomyces griseolus from the culture medium, but only inhibited the growth of Penicillium flavigenum. Lead white pigment showed a color difference of 5.56 (∆E*97) after irradiation, but lead tetroxide, azurite, malachite, ferrous oxide, and cinnabar showed no visible changes. The Raman spectra of the irradiated and unirradiated samples were basically the same. E-beam radiation did not affect the surface cohesion of the pigment layer. This preliminary work shows the potential of electron-beam technology in mural protection and provides basic research and relevant experience for the subsequent in situ mural protection work.

Funder

National Key Research Program Projects of China

Innovation Foundation of the Institute of High Energy Physics, CAS

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3