Investigation on the Catalytic Cracking Mechanism of CuO on Dimethyl Sulfoxide (C2H6OS) and Surface Modification Effects: Insights from Density Functional Theory Calculations

Author:

Wang Yan-Qun123ORCID,Meng Xiang-Long12,Xia Hao-Hai3,Su Jian-Zheng1,Lu Li-Lin4ORCID,Yu Wei-Chu3

Affiliation:

1. State Key Laboraory of Shale Oil and Gas Enrichiment Mechanisms and Effective Development, Beijing 100083, China

2. State Center for Research and Development of Oil Shale Exploitation, Beijing 100083, China

3. College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China

4. State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China

Abstract

To explore the catalytic cracking mechanism of CuO on oil shale and the catalytic activity of surface modifications of CuO on oil shale, dimethyl sulfoxide (C2H6OS) is used as a model molecule representative of organic sulfur compounds in oil shale, and the adsorption and dissociation behaviors of C2H6OS molecules on pure and OH pre-adsorbed CuO(111) surfaces were investigated by density functional theory calculations. The results indicate that C2H6OS selectively adsorbs at the Cusub sites via the S atom and decomposes through cleavage of the C–H bond prior to the breaking of the C-S bond on both surfaces. The presence of OH on the CuO(111) surface promoted the dissociation of C2H6OS. The energy barriers of dehydrogenation and desulfurization of C2H6OS on the OH pre-adsorbed CuO(111) surface were 20.0 and 19.3 kcal/mol, respectively, which are 41% and 49% lower than those on pure surfaces. The present results provide crucial guidance for the synthesis and improvement of high-performance pyrolysis catalysts specifically designed for oil shale applications. Additionally, they also present important data regarding to the thermal stability of C2H6OS in the presence of incompatible substances.

Funder

National Oil Shale Research and Development Center Foundation of China

National key research and development project

Sinopec Science and Technology Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3