Investigating the Performance and Stability of Fe3O4/Bi2MoO6/g-C3N4 Magnetic Photocatalysts for the Photodegradation of Sulfonamide Antibiotics under Visible Light Irradiation

Author:

Li Ke12,Chen Miaomiao1,Chen Lei1,Xue Wencong1,Pan Wenbo1,Han Yanchao2

Affiliation:

1. Key Laboratory of Song Liao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China

2. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

Abstract

In this study, an Fe3O4/Bi2MoO6/g-C3N4 magnetic composite photocatalyst was synthesized for the visible-light-driven photocatalytic degradation of sulfonamide antibiotics, specifically sulfamerazine (SM1). Characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy (PL), UV-vis diffuse reflectance spectra (UV-vis), and the use of a vibrating sample magnetometer (VSM), were employed to analyze the fabricated samples. The composite exhibited efficient visible-light absorption and charge separation, with optimal photocatalytic performance achieved at a pH value of 9.0. The study reveals the importance of solution pH in the degradation process and the potential applicability of the composite for efficient magnetic separation and recycling in photocatalytic processes. The Fe3O4/Bi2MoO6/g-C3N4 magnetic composite photocatalyst demonstrated exceptional stability and recyclability, maintaining a high degradation efficiency of over 87% after five consecutive cycles. An XRD analysis conducted after the cycling tests confirmed that the composite’s composition and chemical structure remained unchanged, further supporting its chemical stability. This investigation offers valuable insights into the photocatalytic degradation of sulfonamide antibiotics using magnetic composite photocatalysts and highlights the potential of the Fe3O4/Bi2MoO6/g-C3N4 composite for practical applications in environmental remediation.

Funder

National Natural Science Foundation of China

Science and Technology Research Planning Project of Jilin Provincial Department of Education

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference63 articles.

1. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China;Liu;Environ. Int.,2013

2. Dey, S., Bano, F., and Malik, A. (2019). Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology, Elsevier.

3. Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China;Yang;Sci. Total Environ.,2021

4. Contamination, transport, and ecological risks of pharmaceuticals and personal care products in a large irrigation region;Wang;Sci. Total Environ.,2022

5. Rienzie, R., Ramanayaka, S., and Adassooriya, N.M. (2019). Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology, Elsevier.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3