Simulation of Rock Electrical Properties in Deep Reservoirs Based on Digital Rock Technology

Author:

Shang Suogui1,Gao Qiangyong1,Cui Yunjiang2,Wang Peichun2,Zhang Zhang3,Yuan Yadong4,Yan Weichao56ORCID,Chi Peng7

Affiliation:

1. Tianjin Branch of China National Offshore Oil Corporation Ltd., Tianjin 300459, China

2. Bohai Oilfield Research Institute, Tianjin Branch, China National Offshore Oil Corporation Ltd., Tianjin 300459, China

3. Well-Tech Department, China Oilfield Services Limited, COSL, Sanhe 065201, China

4. China National Offshore Oil Corporation EnerTech-Drilling & Production Co., Tianjin 300452, China

5. Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College of Marine Geosciences, Ocean University of China, Qingdao 266100, China

6. Deep-Sea Multidisciplinary Research Center, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China

7. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Deep reservoirs are in a high-pressure and high-temperature (HPHT) environment, while the experimental conditions for rock electrical properties that meet the deep reservoir conditions are harsh and costly. Although digital rock technology can simulate the electrical properties of rocks, it is limited to electrical simulation studies under normal temperature and pressure conditions (NPT), which limits their ability to capture the electrical characteristics of deep hydrocarbon reservoirs. This limitation affects the accuracy of saturation prediction based on resistivity logging. To simulate the rock electrical properties under HPHT conditions, we proposed a low-cost and high-efficiency HPHT digital rock electrical simulation workflow. Firstly, samples from deep formations were CT-scanned and used to construct multi-component digital rocks that reflect the real microstructure of the samples. Then, mathematical morphology was used to simulate the overburden correction under high-pressure conditions, and the changes in the conductivity of formation water and clay minerals at different temperatures were used to simulate the conductivity changes of rock components under high-temperature conditions. To carry out the electrical simulation of digital rock in deep reservoirs, a numerical simulation condition for HPHT in deep layers was established, and the finite element method (FEM) was used. Finally, based on the equivalent changes in the conductivity of different components, the effects of clay minerals and formation water under HPHT conditions on rock electrical properties were studied and applied to predict the water saturation based on well logging data. We found that considering the influence of temperature, salinity, and clay type, the saturation index (n) of the rock depends on the ratio of the clay conductivity to the formation water conductivity. The larger the ratio is, the smaller the value of n. In addition, the average relative error between the predicted water saturation under HPHT conditions and the sealed coring analysis was 6.8%, which proved the accuracy of the proposed method. Overall, this method can effectively simulate the pressure and temperature environment of deep formations, reveal the electrical conductivity mechanisms of rocks under formation pressure and temperature conditions, and has promising prospects for the study of rock physical properties and reservoir evaluation in deep formations.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

111 project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3