A Damage Identification Method Based on Minimum Mean Square Error Estimation for Wind Tunnel Flexible Plate Condition Monitoring System

Author:

Yun Kang12ORCID,Liu Mingyao1,Wang Jingliang1,Li Cong1

Affiliation:

1. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China

2. Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, College of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Abstract

In this paper, we propose a damage identification method based on minimum mean square error estimation for a wind tunnel flexible plate condition monitoring system. Critical structural members of important equipment are large in size, and the measurement systems used to monitor their condition are often complex. The proposed damage identification method is based on the minimum mean squared error estimator and the generalized likelihood ratio test. It introduced activation function to generate the standard deviation of the data, which can then simulate the sensor output. A single sensor damage only affects a single dimension of the output data matrix of the measurement system. However, structural damage affects the output of multiple sensors. The damage identification method proposed in this paper can not only distinguish the sensor damage from the structure damage, but also locate the damaged sensor or structure damage location. This method can identify the measurement system output anomalies caused by structural damage and locate the approximate location of the damage. It can be applied to damage identification of important structural members such as flexible wind tunnel plates. The damage identification method proposed in this paper is of great significance for damage identification and localization of key components and sensor systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3