Applying Remotely Sensed Environmental Information to Model Mosquito Populations

Author:

Kofidou Maria,de Courcy Williams Michael,Nearchou Andreas,Veletza StavroulaORCID,Gemitzi AlexandraORCID,Karakasiliotis IoannisORCID

Abstract

Vector borne diseases have been related to various environmental parameters and environmental changes like climate change, which impact their propagation in time and space. Remote sensing data have been used widely for monitoring environmental conditions and changes. We hypothesized that changes in various environmental parameters may be reflected in changes in mosquito population size, thus impacting the temporal and spatial patterns of vector diseases. The aim of this study is to analyze the effect of environmental variables on mosquito populations using the remotely sensed Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) obtained from Landsat 8, along with other factors, such as altitude and water covered areas surrounding the examined locations. Therefore, a Multilayer Perceptron (MLP) Artificial Neural Network (ANN) model was developed and tested for its ability to predict mosquito populations. The model was applied in NE Greece using mosquito population data from 17 locations where mosquito traps were placed from June to October 2019. All performance metrics indicated a high predictive ability of the model. LST was proved to be the factor with the highest relative importance in the prediction of mosquito populations, whereas the developed model can predict mosquito populations 13 days ahead to allow a substantial window for appropriate control measures.

Funder

EU and Greek Operational Program Competitiveness Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3