Structural Evolution in Glassy Carbon Investigated Based on the Temperature Dependence of Young’s Modulus

Author:

Yang Yi1,Dang Yanpei1,Ruan Haihui1ORCID

Affiliation:

1. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

Abstract

As a non-graphitized carbon material, possessing exceptional hardness and chemical inertness, glassy carbon (GC) is often synthesized through the pyrolysis method, which includes a compression procedure of powdered precursor materials, thus increasing the costs for production of glassy carbon at an industrial scale. Direct preparation of GC via pyrolysis of bulk precursors is a low-cost approach but encounters challenges arising from an insufficient knowledge of carbon structure formation. In order to solve this problem, a new analysis of the temperature-dependent variation in Young’s modulus of GC obtained by the pyrolysis of phenolic resin at 1000 °C, utilizing the impulse excitation technique (IET), was performed. Our findings demonstrate that there is a critical temperature range of 500–600 °C where pyrolysis leads to the most significant density change and GC is formed as a result. When GC samples are heated again, a significant structural reformation occurs in the same temperature range. It causes a decrease in stiffness, especially at heating rates >3 °C/min, and an interesting restorative effect–increase in stiffness when a GC sample is annealed at temperatures of 500–550 °C. These results bring important implications for the direct formation of large amounts of glassy carbon using bulk precursors.

Funder

Hong Kong GRF

HKPolyU

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3