Properties of Particle Boards Containing Polymer Waste

Author:

Kuliński Marcin1ORCID,Walkiewicz Joanna1ORCID,Dukarska Dorota1ORCID,Dziurka Dorota1ORCID,Mirski Radosław1

Affiliation:

1. Department of Mechanical Wood Technology, Poznań University of Life Sciences, ul. Wojska Polskiego 28, 60-627 Poznań, Poland

Abstract

Nowadays, a significant increase in interest in renewable energy sources can be observed. Wind farms have been one of the solutions representing this trend for many years. One of the important elements of windmills is the blades. The data indicate that what to do with the blades after their use is a global problem, and so it is important to find a way to recycle them. Hence, this work aimed to use these blades in the production of wood-based materials. Two fractions of a fragmented blade were used for the tests: a small one and large one. Boards characterized by densities of 650 kg/m3 and 700 kg/m3 were produced, in which the assumed substitution of the wood material with a polymer was 20% or 40%. Mechanical properties such as bending strength (MOR), modulus of elasticity (MOE), and internal bond strength (IB) were investigated. The 2S65 variant achieved the highest static bending strength and a modulus of elasticity of 2625 N/mm2. The second best result was noted for the 4S65 variant, which was significantly different from the 2S65 variant. In the case of the variants with a density of 700 kg/m3, no significant differences were found and their results were significantly lower. Moreover, research on thickness swelling (TS) after 24 h of immersion and water absorption (WA) were also conducted. The obtained results indicate that the manufactured boards are characterized by good physical and mechanical properties.

Publisher

MDPI AG

Subject

General Materials Science

Reference28 articles.

1. Balasubramanian, A. (2021). Introduction to Ecology, University of Mysore.

2. Land-Use Choices: Balancing Human Needs and Ecosystem Function;DeFries;Front. Ecol. Environ.,2004

3. Halliday, S. (2008). Sustainable Construction, Routledge.

4. A New Model for Environmental and Economic Evaluation of Renewable Energy Systems: The Case of Wind Turbines;Savino;Appl. Energy,2017

5. Musgrove, P. (2009). Wind Power, Cambridge Books.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3