Wrinkling and Strengthening Behaviors in the Two-Layer-Sheet Hot-Forming–Quenching Integrated Process for an Al–Cu–Mg-Alloy Thin-Walled Curved-Surface Shell

Author:

Fan Xiaobo12,Sun Baoshan1,Qu Wenliang2,Chen Xianshuo1,Wang Xugang2

Affiliation:

1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116000, China

2. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150000, China

Abstract

The thin-walled curved-surface component is an important structural element in aerospace. Wrinkling, springback and thermal distortion occur easily when forming these components. To form thin-walled components with high precision and strength, a two-layer-sheet hot-forming–quenching integrated process was proposed, in which wrinkling is prevented by thickening the upper sheet and springback is reduced by solution and die quenching. Selecting an appropriate upper sheet is crucial to suppress wrinkling and accomplish effective die quenching. The effect of the upper sheet on the wrinkling and strengthening behaviors of an Al–Cu–Mg-alloy melon-petal shell was thus studied in detail. The anti-wrinkle mechanism was analyzed through numerical simulation. The forming quality, including forming precision, deformation uniformity and strength, were further evaluated. The wrinkle gradually decreased with the increasing thickness of the upper sheet, resulting from the depressed compressive stress at the edge of the target sheet. A defect-free specimen with a smooth surface was finally formed when the thickness of the upper sheet reached three times that of the target sheet. The profile deviation was ±0.5 mm. Excellent thickness uniformity in a specimen can be obtained with a maximum thinning rate of 6%. The full strength, ranging from 455 to 466 MPa, can be obtained in all regions of the specimen, indicating that effective strengthening can be accomplished with the two-layer-sheet die quenching. The results indicated that high forming quality and full strength can be obtained in a two-layer-sheet hot-forming–quenching integrated process. This research has great potential for engineering applications using aluminum-alloy curved-surface thin-walled components.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

Reference26 articles.

1. Recent developments in advanced aircraft aluminium alloys;Dursun;Mater. Des.,2014

2. Enhancement on deformation uniformity of double curvature shell by hydroforming process and curved blank-holder surface;Liu;Int. J. Adv. Manuf. Technol.,2017

3. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing;Wang;J. Mater. Sci. Technol.,2018

4. Effect of the arrangement of the punch units in multi-point stretch forming process;Xing;Int. J. Adv. Manuf. Technol.,2016

5. Springback control on hydroforming for various specifications ellipsoidal scalloped segment;Tian;Forg. Stamp. Technol.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3