A Study on Optimal Indium Tin Oxide Thickness as Transparent Conductive Electrodes for Near-Ultraviolet Light-Emitting Diodes

Author:

Kim Min-Ju1ORCID

Affiliation:

1. School of Electronics and Electrical Engineering, Department of Foundry Engineering, Convergence Semiconductor Research Center, Dankook University, Yongin-si 16890, Republic of Korea

Abstract

This research study thoroughly examines the optimal thickness of indium tin oxide (ITO), a transparent electrode, for near-ultraviolet (NUV) light-emitting diodes (LEDs) based on InGaN/AlGaInN materials. A range of ITO thicknesses from 30 to 170 nm is investigated, and annealing processes are performed to determine the most favorable figure of merit (FOM) by balancing transmittance and sheet resistance in the NUV region. Among the films of different thicknesses, an ITO film measuring 110 nm, annealed at 550 °C for 1 min, demonstrates the highest FOM. This film exhibits notable characteristics, including 89.0% transmittance at 385 nm, a sheet resistance of 131 Ω/□, and a contact resistance of 3.1 × 10−3 Ω·cm2. Comparing the performance of NUV LEDs using ITO films of various thicknesses (30, 50, 70, 90, 130, 150, and 170 nm), it is observed that the NUV LED employing ITO with a thickness of 110 nm achieves a maximum 48% increase in light output power at 50 mA while maintaining the same forward voltage at 20 mA.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3