A Comparative Study of Causality Detection Methods in Root Cause Diagnosis: From Industrial Processes to Brain Networks

Author:

Zhou Sun1ORCID,Cai He1,Chen Huazhen2,Ye Lishan3

Affiliation:

1. Department of Automation, Xiamen University, Xiamen 361102, China

2. School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China

3. Institute of Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China

Abstract

Abstracting causal knowledge from process measurements has become an appealing topic for decades, especially for fault root cause analysis (RCA) based on signals recorded by multiple sensors in a complex system. Although many causality detection methods have been developed and applied in different fields, some research communities may have an idiosyncratic implementation of their preferred methods, with limited accessibility to the wider community. Targeting interested experimental researchers and engineers, this paper provides a comprehensive comparison of data-based causality detection methods in root cause diagnosis across two distinct domains. We provide a possible taxonomy of those methods followed by descriptions of the main motivations of those concepts. Of the two cases we investigated, one is a root cause diagnosis of plant-wide oscillations in an industrial process, while the other is the localization of the epileptogenic focus in a human brain network where the connectivity pattern is transient and even more complex. Considering the differences in various causality detection methods, we designed several sets of experiments so that for each case, a total of 11 methods could be appropriately compared under a unified and reasonable evaluation framework. In each case, these methods were implemented separately and in a standard way to infer causal interactions among multiple variables to thus establish the causal network for RCA. From the cross-domain investigation, several findings are presented along with insights into them, including an interpretative pitfall that warrants caution.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3